110. A Comparative Study of Platinum Di $(t$ -butyl) $({}^{15}N_2)$ diimine¹) and *trans*- $[PtCl, (N-Ligand)PBu₃)]$ Complexes by ¹⁹⁵ $Pt₂$, ³¹ $P₂$ and ¹⁵N-NMR.

by Henk van der Poel, Gerard van Koten2) and **David M. Grove**

Anorganisch Chemisch Laboratorium, University of Amsterdam, J.H. van't Hoff Instituut, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands

Paul S. Pregosin²) and Karl A. Ostoja Starzewski

Laboratorium für Anorganische Chemie, ETH-Zentrum, Universitätstrasse 6, CH-8092 Zürich

(23.11.81)

Summary

¹⁹⁵Pt-, ³¹P- and ¹⁵N-NMR. data are presented for $[PtCl₂(t-Bu¹⁵N=CH-CH=$ ¹⁵N $(t-Bu)$) $(\eta^2$ -styrene)] **(1)**, $trans-[{}^{p}C_2(PBu_3)]_2(t-Bu^{15}N=CH-CH={}^{15}N(t-Bu))]$ **(2)**, trans- $[PLC]_2(t-Bu^{15}N=CH-CH=^{15}N(t-Bu))$ (PBu₃)] (3) and various complexes of the type trans- $[PLC]_2(N-ligand)(PBu_1)$. In solution the gross structural features of **1** and **2** are shown to be in agreement with those found in the solid state; namely, **I** contains five-coordinate Pt and **2** is dinuclear. In **3** Pt is four-coordinate with only one N-atom of the diimine ligand being coordinated at -50° in CD₂Cl₂. The NMR. data for **2** and **3** are compared with those of *trans*- $[PLC1₂(N-ligand)(PBu₃)]$ (N-ligand = pyridine, 2,6-dimethylpyridine, (^{15}N) -hexylamine, (^{15}N) -t-butylamine and (^{15}N) -aniline) and are discussed in terms of the donor and acceptor properties of the N-ligands.

Introduction. - The study of a metal-ligand interaction is facilitated when both the metal and ligating atoms are observable by NMR. methods. For the Pt,N-bond this is possible *via* the measurement of ^{195}Pt - and $^{14}N(^{15}N$ -)-NMR. spectra. However, for both N-isotopes there are difficulties to be overcome in the measurement of their NMR. spectra; for $^{14}N(I=1)$ the resonances are often broad due to the electric quadrupole moment and for ¹⁵N $(I = \frac{1}{2})$ the low natural abundance $(\sim 0.4\%)$ excludes easy measurement on relatively dilute solutions. Fortunately, the availability of reasonably inexpensive 15N-enriched materials permits the synthesis of ligands which possess more favourable NMR. characteristics, thereby enabling the study of nitrogen in metal complexes. Direct measurement of $195Pt$ -NMR. $(I = \frac{1}{2}$, 34% natural abundance) presents problems only when the metal is directly bound to ligand atoms having relatively large electric quadrupole moments, *e.g.* ¹⁴N [1]; consequently the use of ¹⁵N-enriched ligands conveniently circumvents this problem.

¹) *t*-Bu-¹⁵N=CH-CH=¹⁵N-t-Bu(3,6-¹⁵N₂)-2,2,7,7-tetramethyl-3,6-diaza-3,5-octadiene (95% ¹⁵N-enrichcd).

 $2)$ To whom correspondence should be addressed.

Figure. Three coordination modes of the t-Bu-dim ligand *in* platinum *(II)* complexes: 0, a-N,N'-chelating **(1).** σ -N-, σ -N'-bridging **(2)** and σ -N-monodentate **(3)** (styrene is coordinated either *via* its re or *si* face, in 1 the re-coordination is shown).

In our previous work on the coordination of α -diimines, R-N=CH-CH= N-R (R-dim), to Rh^I, Pd^{II} and Pt^{II} [2-5], we observed that this potentially chelating nitrogen ligand may function in either of three modes: *a*) σ -N-monodentate, *b*) σ -N, σ -N'-bridging, or c) σ , σ -N, N'-chelating with the remaining ligands strongly influencing the observed mode of α -diimine bonding. In the chemistry of Pt^{II} we have identified all three possibilities; representative examples being shown above.

The solid state molecular geometries of $[PtCl₂(t-Bu-dim)(\eta^2-styrene)]$ (1) [4] and *trans*-[$\{PtCl_2(PBu_3)\}\$ ₂ (*t*-Bu-dim)] (2) [3] were determined by X-ray analysis. ³¹P-, ¹³C- and ¹H-NMR. studies revealed that the main structural features of these compounds are retained in solution [4] *[5].* Both **1** and **3** show temperaturedependent NMR. spectra. For **1** this behaviour can be accounted for by olefinrotation with retention of the σ , σ -N, N'-chelate bonded R-dim ligand on the NMR. time scale, evidence coming from ^{195}Pt , ¹³C- and ^{195}Pt , ¹H spin-spin couplingconstants for the C- and H-atoms in both the olefin and R-dim-moieties. In trans- [PtCl, (t-Bu-dim) (PBu,)] **(3)** the fluxional process, which is fast on the 'H-NMR. timescale (60 MHz) at about 120", involves an intramolecular head-to-tail rearrangement of the t-Bu-dim ligand that proceeds *via* a five-coordinate transition state [2].

In order to improve our knowledge in this field of chemistry and specifically to probe the Pt, N-bond directly, we have prepared **1, 2** and **3** containing I5N-enriched t -Bu-diimine and studied their ^{195}Pt -, ^{15}N - and, where applicable, $^{31}P\text{-NMR}$. spectra. This approach should provide a more comprehensive picture of the changes within the platinum coordination sphere and supply further insight into the dynamic processes occurring in solution. In addition, for comparative purposes, we have prepared some model complexes of the type *trans*-[PtCl₂ (nitrogen ligand) (PBu₃)] and report herein their relevant NMR. data.

Experimental Part. - Starting complexes, $K[PLC]₃(\eta^2\text{-styrene})$ and $[{}^{3}PLC₁₂(PBu₃)₂],$ were prepared by published methods [4] **[6].** l5NH4CL(95%-enriched) was purchased from Merck, Sharp and Dohme. All platinum di(t -butyl)glyoxaldiimine complexes were synthesized under N_2 and identified as the pure compounds by spectral comparison with non-enriched analogue [2-4] trans-[PtCl₂(N-ligand) (PBu3)] complexes were synthesized according to literature procedures **for** closely related species [7] and identified by NMR. spectroscopy; the hexylamine [7a] and pyridine [7b] derivatives have been reported earlier. Solvents were dried and distilled before use.

NMR. spectra were measured using a Bruker WM-250 spectrometer operating at 53.77, 101.27 and 25.34 MHz for 195 Pt, 31 P and 15 N respectively. The samples were measured as solutions in rotating 10 mm tubes. Chemical shifts are relative to external Na_2PtCl_6 (aq.), H_3PO_4 and NH_4Cl for ¹⁹⁵Pt, ³¹P and ¹⁵N, respectively, with a positive sign indicating a shift to lower field (higher frequency). The uncertainty in chemical shifts is ± 0.5 ppm for ¹⁹⁵Pt, and ± 0.1 ppm for ³¹P and ¹⁵N. Coupling constants are given in Hz. The details of our $195Pt$ - and $31P\text{-NMR}$. measurements have been reported previously [7-9]. The $15N-NMR$. spectra for the diimine complexes were recorded using a 40° pulse angle with a 0.8 s acquisition time and gated ${}^{1}H$ -decoupling (NOE-suppression).

Preparation of $~t$ -Bu¹⁵N=CH-CH=^{I5}N-t-Bu. - a) $(^{15}N$ -Trichloramine($^{15}NCl_3$). A solution of $^{15}NCl_3$ in CH₂C₁₂ was prepared from the reaction of Ca(OCl)₂ [4.05 g (18 mmol) suspended in CH₂Cl₂/H₂O1:1] with ¹⁵NH₄Cl [0.98 g (18 mmol) in aq. HCl-solution] at $\sim 0^{\circ}$ in a modification of a method described elsewhere [IOa].

b) Preparation of (^{15}N) -Butylammonium chloride(t-Bu¹⁵NH₃Cl) was prepared from the reaction of a fresh solution of ¹⁵NCl₃ in CH₂Cl₂ (vide supra) with AlCl₃ (4.81 g, 36 mmol) and t-BuCl (2.97 g, 36 mmol) at -10° , using a work-up suitable for water soluble amines, in a manner similar to that described in the literature [lob] and recrystallised from water/diethyl ether/ethanol.

c) Preparation of t -Bu-¹⁵N=CH-CH=¹⁵N-t-Bu((¹⁵N₂)-t-Bu-dim). A solution of t-Bu¹⁵NH₂, obtained from t-Bu15NH3C1 (1 equiv.) dissolved in *5* ml water and made basic with 50% aq. NaOH-solution, was slowly added to a stirred mixture of glyoxal (30% aq. solution, 0.75 equiv.) and 15 ml pentane. After stirring for **LO** min, the pentane and water layers were separated, washed with *5* ml water and 5 ml pentane respectively, and the combined pentane fractions dried over $Na₂SO₄$. Evaporation of this solution afforded crude $(^{15}N_2)-t$ -Bu-dim which was purified by sublimation (30°, 3 Torr). With nonenriched materials yields varied from $30-55%$ (based on NH₄Cl for a 18 mmol scale reaction). -¹H-NMR. (60 MHz, CDCl₃, 34°); 1.30 (³J(¹⁵N,¹H)= 1.9, C(CH₃)₃); 7.93 (²J(¹⁵N,¹H)= 2.4, ³J(¹⁵N,¹H) $= 1.2$ Hz, HC=N).

Preparation of $[PLCI_2((^{15}N_2)-1-Bu-dim)/(n^2-styrene)]$. $(^{15}N_2)-t-Bu-dim$ (85 mg, 0.5 mmol) was added to a stirred solution of K[PtCl₃(η ²-styrene)] (213 mg, 0.48 mmol) in acetone (1 ml) and after 5 min the mixture was filtered to remove KCl. Concentration of the filtrate and addition of 2 ml hexane afforded yellow microcrystalline $[PLC_1(15N_2)-t-Bu-dim)(n^2$ -styrene)] which was collected by filtration after standing for 2 h at -30° . The crystals were washed with hexane $(3 \times 1 \text{ ml})$ and dried i.V. at RT. - $=$ 2, $3J(^{195}Pt,{}^{1}H)$ =40, HC=N). - At 50°: 1.54 and 1.70 $({}^{3}J(^{15}N,{}^{1}H)$ = 2.0 and 2.3 respectively C(CH₃)₃); 8.7 *(m flanked by platinum satellites, HC=N).* $-$ ¹³C-NMR. (20 MHz, CDCl₃, 34°): 30.2 (C(CH₃)₃); $\rm{H-NMR}$. (90 MHz, CDCl₃, 34°): 1.60 ($\rm{^{3}J(^{15}N,^{1}H)}=2.3$, C(CH₃)₃); 8.69 ($\rm{^{2}J(^{15}N,^{1}H)}=2$, $\rm{^{3}J(^{15}N,^{1}H)}$ 64.0 $({}^2J(^{15}N,{}^{13}C)=25$, $C(CH_3)_3$; 157 $({}^1J(^{15}N,{}^{13}C)=12,{}^3J(^{15}N,{}^{13}C)=3.5$ Hz, $C=N$).

 $[PLC]_2$ $([^{15}N_2)$ -t-*Bu-dim)]* obtained as the decomposition product of 1 by styrene release. - ¹H-NMR. $(90 \text{ MHz}, \text{CDC1}_3, 34^\circ)$: 1.79 $(3J(^{15}\text{N}, ^{1}\text{H}) = 2.3, \text{ C}(\text{CH}_3)_3)$; 8.80 $(2J(^{15}\text{N}, ^{1}\text{H}) = 2.1, 3J(^{195}\text{Pt}, ^{1}\text{H}) = 90 \text{ Hz}$, $HC = N$).

 $\int \{PtCl_2(PBu_3)\}^2(\ell^{15}N_2)$ -t-Bu-dim)]. t -Bu-dim-¹⁵N₂ (102 mg, 0.6 mmol) was added to a stirred suspension of [[PtClz(PBu3)}2] (468 mg, 0.5 mmol) in methanol (2 ml). Stirring **ficn** 1 h is accompanied by formation of a yellow precipitate; after adding hexane (1 ml) and setting the mixture aside at -30° for several days the crystals were filtered off, washed with hexane and dried i.V. at RT.

In situ preparation of $[PLCl_2(PBu_3)]^{(15)}$ -t-Bu-dim)] for *NMR*. studies. t-Bu-dim-¹⁵N₂ (1.2 equiv.) was added to a solution of $[{}^{3}P(CI_{2}(PBu_{3}))_{2}(({}^{15}N_{2})-t-Bu-dim)]$ (1 equiv.) in CD₂Cl₂ (3 ml). The resulting solution was a mixture of excess diimine ligand and $[PtCl₂(PBu₃)((15N₂)-t-Bu-dim)]$.

Results and Discussion. - In our experience we have found *t*-Bu-dim to bestow favourable stability characteristics on our complexes and we therefore required the $15N$ -labelled ligand for the present spectroscopic study. Consequently we have optimized the reported synthesis of t-butylamine from NH_4Cl in such a way as to make this suitable for a small scale preparation [10] (see experimental part).

Comparison of the IR. spectra of compounds **1** and **2** containing labelled and non-labelled t-Bu-dim confirmed the earlier assignment of the *v* (CN)-vibrations in these complexes [3] [4] (see *Table I).*

'

	$v(C=14N)$	$v(C=15N)$	
t -Bu-dim	1631	1607	
<i>trans</i> -[$[PtCl2(PBu3)\rangle$ ₂ (<i>t</i> -Bu-dim)]	1607	1574	
$[PtCl2(t-Bu-dim)(n2-styrene)]$	1603	1581	
^a) KBr pellets, cm ⁻¹ .			

Table 1. *IR. spectra^a*) *of t-Bu-dim and* $(^{15}N_2)$ -t-Bu-dim and complexes 1 and 2

To our knowledge there is only one other report of the use of ¹⁵N-enriched *a*diimines in organometallic chemistry, *i.e.* in $[Mo(CO)₄(CH₃¹⁵N=CH-CH= ¹⁵NCH₃)]$ [11]. However, this *in situ* synthesis of $({}^{15}N_2)$ -Me-dim, by our co-workers, is not of general applicability.

a) *NMR. properties of* $(^{15}N_2)$ -t-Bu-dim *Pt* (II) complexes.

 $[PtCl_2(t-Bu^{-15}N=CH-CH=^{15}N-t-Bu) (n^2-styrene)]$ (1). The NMR. data for $[PtCl₂(¹⁵N₂)$ -t-Bu-dim) $(\eta^2$ -styrene)] are collected in *Table 2*. The lowtemperature spectra $(CD_2Cl_2, -80^\circ)$ reveal unambiguously that rotation of the styrene around the platinum-olefin bond axis is slow on the NMR. time scale. In particular there are two non-equivalent 15 N-signals (317.7 and 303.0 ppm) both flanked by 195 Pt-satellites whose separations suggest one bond Pt,N-interactions. This is in agreement with the expected asymmetry in the molecule. From previous ${}^{1}H$ - and ${}^{13}C$ -NMR. data [4], as well as from the solid state

 $a)$ Chemical shifts are in ppm, coupling constants in Hz. Data are for CDCI₃ solutions unless otherwise specified. See experimental part for details.

 (b) In acetone- d_6 .

c) At -80° ; $3J(^{15}N,^{15}N)=5$ Hz.

d, In CD₂Cl₂. This molecule is dinuclear, see [3]. ${}^{3}J({}^{15}N, {}^{15}N) = 2.4$ Hz, $\delta({}^{15}N)$ free ligand= 355.3.

e, In CD_2Cl_2 at -50° . One N-atom of the chelate is uncoordinated.

Data from [7].

g) ISN-data from mixture with **3.** X-ray structure of **1** (a trigonal bipyramid with axial C1-atoms), one anticipates the two N-atoms, the metal and the two olefinic atoms to lie in the same plane [4] *[5].*

The observation of markedly different ${}^{1}J(195Pt, 15N)$ values (178 and 135 Hz) is in line with the results of *Powell* & *Cooper,* who found correlations between ${}^{1}J(^{195}Pt, C)$ values and the differing (Pt, C)-bond lengths in platinum-styrene complexes [12]. There is a coupling of 5 Hz between the two N-atoms (cf. data for 3), though, given that there are two coupling pathways ${}^{2}J(^{15}N-Pt-{}^{15}N)$ and $3J(^{15}N=CH-CH=^{15}N)$, it is difficult to attribute meaning to this number.

The ¹⁹⁵Pt-NMR. spectrum at -80° is consistent with the ¹⁵N-NMR. results and consists of a four-line pattern, a consequence of the splitting from the nonequivalent ¹⁵N-atoms. The ¹⁹⁵Pt-chemical shift (-1996 ppm) is noteworthy, being distinctly different from those observed in four-coordinate trans- \tilde{P} tCl₂(L) $(\eta^2$ -olefin)] (L=N-donor ligand) complexes for which $\delta(^{195}Pt) = -2850$ to -3050 ppm [1] [7-9] (see *Table 3*). At 32° the four-line pattern at -1979 ppm (slightly shifted due to the large temperature-dependence of δ (¹⁹⁵Pt)) now appears as a pseudo triplet $[13]$. The spacings within this triplet (165 Hz) are the average of the two separate one-bond (Pt, N)-couplings observed at -80° , thus confirming that both N-atoms are coordinated to the metal at 32°. Similar conclusions have already been drawn, based on ¹H- and ¹³C-NMR. measurements [4]. Taken together, the various NMR. data are compatible only with a five-coordinate srructure for complex **1** in which olefin-rotation gives rise to the temperature-dependent features.

 $\int \{PtCl_2(PBu)\}\cdot (t-Bu^{-15}N=CH-CH^{-15}N-t-Bu)\}$ (2). The structure of 2, shown diagrammatically above, has been solved by X-ray diffraction methods [3]. Among the most relevant features of this structure is the s-trans-geometry of the diimine ligand bridging the two trans- $[PtCl_2(PBu_3)]$ units, the $(P-Pt-N=C-C=N-Pt-P)$ skeleton being virtually planar.

The ¹⁹⁵Pt-, ³¹P- and ¹⁵N-NMR. spectra of ¹⁵N-enriched 2 are in agreement with the basic structural features, each nucleus giving rise to a single resonance pattern with corresponding first order spin-spin couplings (see *Table* 2). Both the 31P- and $15N-NMR$. spectra show a 50 Hz two-bond P, N coupling constant, a value which denotes a *trans-geometric* orientation for these two spins. The ¹⁹⁵Pt-chemical shift at -3412 ppm is fully compatible with a complex of type *trans*-[PtCl₂LL'] in which L and L' are phosphine (arsine) and N-donor ligands, respectively (see *Table 2*).

trans- $PtCl$ ₂ (t-Bu-¹⁵N=CH-CH=¹⁵N-t-Bu) (PBu_3) **(3)**. Previous studies have shown that analytically pure platinum-R-dim complexes $[PtCl₂(R-dim)(PR₃)]$ and [PtCI, (R-dim) **(ASK,)]** can be obtained as solids when both triaryl-phosphines or arsines are used. However, for the tributylphosphine analogues $[PLC]$, $(R-dim)$ (PBu₃)], *in situ reaction of the complex* $[{}^{'}PtCl_2(PBu_3)]_2 (R-dim)$ with an equivalent of free R-dim was found to be the best method. Unlike the dinuclear complex, monomeric $[PLC]_2((^{15}N_2)-t-Bu-dim)(PBu_3)]$ (3) exhibits temperature-dependent NMR.-behaviour.

The ¹⁵N-NMR. spectrum at -50° shows two widely separated groups of signals centred at 283.5 and 370 ppm with the latter being only slightly shifted from the position of free $(^{15}N_2)$ -t-Bu-dim (355.3 ppm). The higher-field resonance is accompanied by ¹⁹⁵Pt-satellites $(^1J(^{195}Pt, ^{15}N) = 217 Hz$) and the signals are further

split by coupling to ${}^{31}P({}^{2}J({}^{31}P,{}^{15}N)=51$ Hz). Both ¹⁵N-resonances show a further small splitting of 2.4 Hz which we assign to ${}^{3}J(^{15}N=CH-CH={}^{15}N)$. A high-field shift on coordination is in agreement with the literature for other $sp²$ hybridized N-ligands [8]. The ¹⁹⁵Pt-resonance at -50° is a four-line pattern centred at -3415 ppm (only 3 ppm away from δ (¹⁹⁵Pt) for the four-coordinate dinuclear complex **2)** and consists of a doublet, stemming from coupling to the P-atom of $PBu₃$, further split by a single ¹⁵N-spin. The ³¹P-NMR. spectrum echoes the $195Pt-$ and $15N-NMR$. results and together these data allow us to confirm that structure of 3, previously suggested from ¹H- and ¹³C-NMR. measurements.

The NMR. spectra for *3* at room temperature are somewhat different. Neither δ (¹⁹⁵Pt) nor δ (³¹P) has changed appreciably, however the doublets now appear as pseudo triplets. Closer inspection of the spectra shows that the centre resonance of the triplet is considerably broader then the outside lines, which is somewhat reminiscent of the X-part of an *ABX* spectrum.

These pseudo triplets probably result from the two originally inequivalent ¹⁵N-donor-atoms equilibrating by an exchange process having an intermediate rate at this temperature. **A** probable mechanism, which is consistent with the data, is a process in which the t-Bu-dim ligand is undergoing an intramolecular exchange during which the uncoordinated end of the chelate attacks the metal to afford a fivecoordinate transition state (or intermediate) which is probably not present in significant concentrations. Although it is not possible to be precise concerning the exchange mechanism, the similarity of δ (¹⁹⁵Pt)-values at -50° and RT. is noteworthy, since $\delta({}^{195}Pt)$ for the five-coordinate complex (1) is rather different than that for a four-coordinate complex. Because of the wide separation of the δ ⁽¹⁵N) in the slow-exchange limit (2162 Hz) the coalescence temperature will be high and therefore an intermediate exchange rate is expected at RT. (compare fast exchange limit in the 'H-NMR., 60 MHz, at 120" *[2]).*

b) Comparative spectroscopy of trans-[PtCl, (N-donor) *(PBu,)]* complexes with **1, 2** and *3.* In view of the versatility of the diimine ligand we considered it useful to compare its NMR. spectroscopic properties with those of some potentially similar ligands. To this end we have prepared several complexes of the type *trans*- $[PLC]$ ₂

L_1 in $[PL_1]^-$		$\delta(^{195}Pt)^a)$ L ₂ in <i>trans</i> -[PtCl ₂ (C ₂ H ₄)L ₂]		<i>trans</i> -[$PtCl2$ (N-ligand) $PBu3$]	
			δ (¹⁹⁵ Pt) ^b)	N-ligand	δ (195Pt)
PMe ₃	-3500	MeNH ₂	-3040	t -Bu- ¹⁵ N=CH-CH= ¹⁵ N-t-Bu	-3415
PEt_1	-3540	i -PrNH ₂	-3008	Hexylamine	-3612
PPT ₂	-3520	$PhCH(t-Bu)NH_2$	-2990	t -Butylamine	-3534
PPh_3	-3513	Pyridine	-2979	Pyridine	-3505
PF ₃	-3626	2,6-Dimethylpyridine t -Bu- ¹⁵ N=CHCH= ¹⁵ N-t-Bu	-2877 $-1979c$	2,6-Dimethylpyridine	-3451

Table 3. *IY5Pt-NMR. Chemical Shift Daia*

^a) Data from [14]. Converted using 4533 ppm as the chemical shift of Na₂PtCl₆ relative to the given TMS reference.

b) Data from [15].

^c) Five-coordinate complex **1**, acetone- d_6 .

 $(N-ligand)(PBu₃)$] and measured their ¹⁹⁵Pt-, ³¹P-, and in one case ¹⁵N-NMR. spectra.

Chemical shifts. In Table *3* we show '95Pt-NMR. chemical shift data for our diimine compounds as well as for the model complexes which contain the nitrogen ligands ¹⁵N-substituted pyridine, 2,6-dimethylpyridine, hexylamine, *t*-butylamine and aniline. **As** may be seen the Pt-chemical shifts cover a 200 ppm range from -3412 to -3612 ppm (relative to Na₂PtCl₆) with the diimine complexes falling at the low-field end of this range.

The question as to whether this is a significant change may be answered after considering the following arguments:

a) changing a ligand atom can affect δ (¹⁹⁵Pt) by more than 1,000 ppm. Ptchemical shifts for the anions $[PLC₁(NMe₃)]^-$, $[PLC₁(PMe₃)]^-$ and $[PLC₁(AsMe₃)]^$ are: -1715 , -3500 and -3173 ppm, respectively [14]. Consequently, our variations in δ (¹⁹⁵Pt) are only moderate in magnitude;

b) changing the substituents on a donor-atom can affect δ (¹⁹⁵Pt) by slightly more than 100 ppm. Some examples are shown in Table *3;*

c) there is a steric effect on δ (¹⁹⁵Pt) [1] [15]. Bulky substituents induce a low-field shift whose magnitude can be 50-100 ppm, *i.e.* δ (¹⁹⁵Pt) for (2) = -3412. For (2) with R = i-Pr instead of t-Bu, δ (¹⁹⁵Pt) = $-$ 3472.

With point *c* in mind, we see from the Tables 2 and *3* that the differences in δ (¹⁹⁵Pt) (54 ppm between the chemical shifts the pyridine and 2.6-dimethylpyridine complexes and 78 ppm between those of the hexylamine and t -butylamine complexes) are in reasonable agreement with the literature. Moreover, it seems acceptable that the pyridine complex should be to low-field of the hexylamine compound as a similar effect is found in the C_2H_4 complexes (see Table 3). Interestingly, our diimine complexes show resonances which are 36 and 39 ppm to lower-field of the 2,6-dimethylpyridine derivative. Although this is a small difference, it confirms that the sp^2 -N-donors have lower-field Pt-chemical shifts than the sp³-analogs. Ideally, the remaining chemical shift data for ^{31}P and ^{15}N should provide additional information concerned with how these differences originate.

Unfortunately, our ¹⁵N-chemical shift data are insufficient (although the $15N$ coordination chemical shift has received some attention [7a] [8] [16]) and our ^{31}P -NMR.-results show no obvious trends; consequently we turn to coupling constants.

Coupling Constants. The one-bond coupling constants ¹J (¹⁹⁵Pt, ³¹P), for the PBu₃ complexes are shown in Table 2 and may be seen to vary from 3338 Hz to 3533 Hz. If one excludes the (l5N)-ani1ine complex, the total range is reduced from **195** Hz to 102 Hz. Considering that this coupling constant is known to be sensitive to the nature of the rrans-ligand [17] [18] - we show some values in Table *2* which cover the range 2377 to 3533 Hz - these changes are rather small.

The magnitude of ${}^{1}J(195Pt, 31P)$ for all of our compounds is not unusual and suggests that the *trans*-influence of our N-ligands is similar to $N=C=S^{-1}[9]$ [20], but slightly larger than Cl^{-} [7a] [18]. In short, there seems nothing special about these values.

Some $J(195Pt, 15N)$ values are also shown in Table 2, with the values varying from 103 to 217 Hz. Theory [21] [22] predicts that a one-bond coupling involving an sp^3 -N-atom will be smaller by \sim 25% than that for the analogous sp^2 -N-atom, *e.g.* $^{1}J(^{15}N, ^{1}H)$ for $^{15}NH_{4}^{+}$ is 73.2 Hz, yet for the quinolinium ion is 96.0 Hz [23]. *Al-Najjar et al.* [24] have found ¹*J*(¹⁹⁵Pt, ¹⁵N) values of 409 Hz and 299 for the complexes trans-[PtCl₂(η ²-C₂H₄)(N-ligand)] with (¹⁵N)-pyridine and (¹⁵N)-dimethylamine, respectively, thereby qualitatively supporting this expectation. Given our value of 159 Hz for trans- $[PtCl_2 (^{15}NH_2-1-Bu)(PBu_3)]^3$ and that of 171 Hz reported for trans- $[PtCl₂(¹⁵NHMe₂)(PPh₃)]$ [24], we might expect an sp²-N-ligand trans to a tertiary phosphine to show a $\frac{1}{J}$ ($\frac{195}{P}$ t, $\frac{15}{N}$) value near 210 Hz. Our observed $1J(^{195}Pt, ^{15}N)$ coupling constants of 211 and 217 Hz for trans-[[PtCl₂ (PBu₃)]₂ (t-Budim-¹⁵N₂)] (2) and trans-[PtCl₂ (¹⁵N₂)-t-Bu-dim) (PBu₃)] (3), respectively, therefore, seem quite normal. Consequently, neither ${}^{1}J(1^{95}Pt, {}^{15}N)$ nor ${}^{1}J(1^{95}Pt, {}^{31}P)$ markedly distinguishes between the diimine ligand and aliphatic amine.

Conclusions. - The results of our studies on various Pt (11) complexes containing monodentate- and bidentate-N-donor ligands may be briefly outlined as follows: i) the low temperature ¹⁹⁵Pt- and ¹⁵N-NMR. data of $[PtCl_2(t-Bu-dim)(n^2-styrene)]$ **(1)** provide conclusive proof, together with previous **13C-** and 'H-NMR. data, that this compound in solution is five-coordinate with σ , σ -N, N' chelate-bonded t-Bu-dim. At room temperature when olefin-rotation is known to take place, retention of ¹⁵N-coupling to the Pt-centre is evidence that the i -Bu-dim ligand does not dissociate to generate a four-coordinate intermediate; ii) the solution-NMR. data for trans- $[PtCl₂ (t-Bu-dim)PBu₃]$ (3) at -50° indicate that the Pt is fourcoordinate with a σ -N monodentate-bonded t-Bu-dim positioned trans to the Pdonor-atom. At higher temperature a fluxional process takes place which begins to equilibrate both N-donor-atoms of the t -Bu-dim ligand on the NMR. timescale. This behaviour has been interpreted in terms of a head to tail rearrangement which presumably involves a five-coordinate transition state; iii) The σ -N-, σ -N'-bridging mode of the t-Bu-dim ligand in $[{\rm PrCl}_2(PBu_3)]_2(t-Bu-dim)]$ (2) is retained in solution at RT. No fluxional behaviour was observed and the NMR. parameters are consistent with the known solid state features; iv) Both chemical shift and coupling constant data suggest that the donor properties of the t -Bu-diimine ligand are similar to those of other N-ligands. There is some indication that the metal chemical shift recognizes sp^2 -N-atoms differently than the sp^3 -analogues but the data are not readily quantitatively interpreted. For seven complexes, in which a variety of N-ligands are *trans* to PBu₃, the value of ¹J(¹⁹⁵Pt,³¹P) does not vary greatly (3413 \pm 3%), thus indicating that these N-ligands have a similar transinfluence. Since there is little π -back-bonding from Pt (II) to aliphatic tertiary phosphines [7a] **[18]** the data also imply that the trans-N-donor-atom does not significantly alter the σ -component of the (Pt, P)-bond.

Clearly, in all of this work the use of multinuclear ¹⁹⁵Pt-, ³¹P- and ¹⁵N-NMR., in conjunction with ¹⁵N-labelling of the t-Bu-dim ligand, can provide a direct approach to the elucidation of the bonding modes (including fluxionality) of the α -diimine ligand in platinum (TI) complexes.

³) We chose this value to compare with our diimine as the complex also contains a *t*-butyl group.

Thanks are due to Prof. *K. Vrieze* for stimulating discussions. Dr. *K.A. Ostoja Starzewski* thanks Schweizerische Nationalfonds zur Förderung der wissenschaftlichen Forschung for support.

REFERENCES

- [I] *H. Motschi. S. N. Sze* & *P. S. Pregosin,* Helv. Chim. Acta 62, 2086 (1979).
- [2] *H. van der Poel, G. van Koten & K. Vrieze, Inorg. Chem. 19, 1145 (1980).*
- [3] *H. van der Pod, G. van Kolen, K. Vrieze, M. Kokkes* & *C. H. Stam,* Inorg. Chim. Acta *39,* 197 (1980).
- [Ja] *H. van der Poel, G. van Koten, M. Kokkes* & *C. H. Stam,* J. Organomet. Chem. *175,* C21 (1979).
- [4b] *H. van der Poel, G. van Kofen, M. Kokkes* & *C. H. Stam,* Inorg. Chem. in **press,** 1981.
- *[5] H. van der Pod. G. van Koren* & *K. Vrieze,* Inorg. Chim. Acta in press, 198 I.
- [6] *F.R. Hartley,* Organomet. Chem. Rev. Sect. A6, 119 (1970).
- [7a] *H. Motschi, P. S. Pregosin & L. M. Venanzi, Helv. Chim. Acta 62, 667 (1979).*
- [7b] *A. Pidcock, R. E. Richards* & *L.M. Venanzi,* J. Chem. Soc. A 1Y68, 1970.
- [8] *H. Motschi* & *P. S. Pregosin,* Inorg. Chim. Acta *40,* 141 (1980).
- (91 *W. Freeman, P. S. Pregosin, S. N. Ste* & *L. M. Venanzi,* J. Magn. Reson. 22 473 (1976).
- (1965). [IOa] *P. Kovacic. C. T. Goralski, J.J. Hiller, J.A. Levisky* & *R. M. Lunge,* **J.** Am. Chem. Soc. *87,* 1262
- [lob] *P. Kovacic* & *M.K. Lowery,* J. Org. Chem. *34,* 91 l(1969).
- *L. H. Staal, D.J. Stufkens* & *A. Oskam,* Inorg. Chim. Acta 26. 255 (1978). [I I]
- [12al D. *G. Cooper, G. K. Hamer, J. Powell* & *W. F. Reynolds,* J. Chem. Soc. Chem. Comm. *1973,* 449.
- [12b] *S. C. Nyburg, K. Simpson* & *W. Wong-Ng,* J. Chem. Soc. DaltonTrans. fY76, 1865.
- 113) *R.G. Kidd* & *R.J. Goodfellow,* 'NMR. and Periodic Table' (Eds. K.K. Harris & B.E. Mann) Academic Press, New York 1978, **p.** 250, see also ref. 9;
- [14] *P. L. Goggin. R. J. Goodfellow, S. R. Haddock* & *B. F. Taylor,* J. Chem. Sot. Dalton Trans. *1976,* 459.
- [151 *P. S. Pregosin. S. N. Sze, P. Salvadori* & *R. Lazzaroni,* Helv. Chim. Acta *60,* 25 14 (1977).
- [I61 *P. S. Pregosin* & *E. Steiner,* Helv. Chim. Acta **5Y.** 376 (1976).
- [171 *L. M. Venanzi,* Chem. in Britain *1968,* 162.
- [181 *F. H. Allen, A. Pidcock* & *C. R. Waterhouse,* J. Chem. *SOC.* A *IY70,* 2087.
- [19] *S.J. Anderson, P. L. Goggin* & *R. J. Goodfellow,* J. Chem. Soc. Dalton 1976, 1959.
- *[20] S.J. Anderson* & *R.J. Goodjellow,* J. Chem. Soc. Dalton *1977,* 1683.
- [21] *J. F. Nixon &A. Pidcock,* 'Ann. Rev. NMR. Spectroscopy', 2, 345 (1969).
- [22] *J. A. Pople* & *Suntry,* Mol. Phys. *8,* **1** (1964).
- [23] *T. Axenrod.* in: 'Nitrogen NMR' (ed. M. Winanoski and **G.A.** Webb), Plenum Press, New York 1973. p. 261.
- [24] *I. M. AI-Najjar, M. Green, S.J.S. Kerrison* & *P. Sadler,* J. Chem. Res. **(S)** 206 (1979).